Information theory of behavior

Biology can tell us what but theory tells us why. There is a new issue of Current Opinion in Neurobiology that focuses on the theory and computation in neuroscience. There’s tons of great stuff there, from learning and memory to the meaning of a spike to the structure of circuitry. I have an article in this issue and even made the cover illustration! It’s that tiny picture to the left; for some reason I can’t find a larger version but oh well…

Our article is “Information theory of adaptation in neurons, behavior, and mood“. Here’s how it starts:

Recently Stephen Hawking cautioned against efforts to contact aliens [1], such as by beaming songs into space, saying: “We only have to look at ourselves to see how intelligent life might develop into something we wouldn’t want to meet.” Although one might wonder why we should ascribe the characteristics of human behavior to aliens, it is plausible that the rules of behavior are not arbitrary but might be general enough to not depend on the underlying biological substrate. Specifically, recent theories posit that the rules of behavior should follow the same fundamental principle of acquiring information about the state of environment in order to make the best decisions based on partial data

Bam! Aliens. Anyway, it is an opinion piece where we try to push the idea that behavior can be seen as an information-maximization strategy. Many people have quite successfully pushed the idea that sensory neurons are trying to maximize their information about the environment so that they can represent it as well as possible. We suggest that maybe it makes sense to extend that up the hierarchy of biology. After all, people generally hate uncertainty, a low information environment, because it is hard to predict what is going to happen next.

Here is an unblocked copy of the article for those who don’t have access.

References

Sharpee, T., Calhoun, A., & Chalasani, S. (2014). Information theory of adaptation in neurons, behavior, and mood Current Opinion in Neurobiology, 25, 47-53 DOI: 10.1016/j.conb.2013.11.007

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s