Sleep – what is it good for (absolutely nothing?)

Sleep can often feel like a fall into annihilation and rebirth. One moment you have all the memories and aches of a long day behind you, the next you wake up from nothingness into the start of something new. Or: a rush from some fictional slumber world into an entirely different waking world. What is it that’s happening inside your head? Why this rest?

Generally the answer that we are given is some sort of spring cleaning and consolidation, a removal of cruft and a return to what is important (baseline, learned). There is certainly plenty of evidence that the brain is doing this while you rest. One of the most powerful of these ‘resetting’ mechanisms is homeostatic plasticity. Homeostatic plasticity often feels like an overlooked form of learning, despite the gorgeous work being done on it (Gina Turrigiano and Eve Marder’s papers have been some of my all-time favorite work for forever).

One simple experiment that you can do to understand homeostatic plasticity is to take a slice of a brain and dump TTX on it to block sodium channels and thus spiking. When you remove it days later, the neurons will be spiking like crazy. Slowly, they will return to their former firing rate. It seems like every neuron knows what its average spiking should be, and tries to reach it.

But when does it happen? I would naively think that it should happen while you are asleep, while your brain can sort out what happened during the day, reorganize, and get back where it wants to be. Let’s test that idea.

Take a rat and at a certain age, blind one eye. Then just watch how visual neurons change their overall firing rate. Like so:Screen Shot 2016-04-03 at 11.26.07 AMdarklight-homeostasis

At first the firing rate goes down. There is no input! Why should they be doing anything? Then, slowly but surely the neuron goes back to doing what it did before it was blinded. Same ol’, same ol’. Let’s look at what it’s doing when the firing rate is returning to its former life:

sleep-homeostasisThis is something of a WTF moment. Nothing during sleep, nothing at all? Only when it is awake and – mostly – behaving? What is going on here?

Here’s my (very, very) speculative possibility: something like efference copy. When an animal is asleep, it’s getting nothing new. It doesn’t know that anything is ‘wrong’. Homeostatic plasticity may be ‘returning to baseline’, but it may also be ‘responding to signals the same way on average’. And when it is asleep, what signals are there? But when it is moving – ah, that is when it gets new signals.

When the brain generates a motor signal, telling the body to move, it also sends signals back to the sensory areas of the brain to let it know what is going on. Makes it much easier to keep things stable when you already know that the world is going to move in a certain way. Perhaps – perhaps – when it is moving, it is getting the largest error signals from the brain, the largest listen to me signals, and that is exactly when the homeostatic plasticity should happen: when it knows what it has something to return to baseline in respect to.

Reference

Hengen, K., Torrado Pacheco, A., McGregor, J., Van Hooser, S., & Turrigiano, G. (2016). Neuronal Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake Cell, 165 (1), 180-191 DOI: 10.1016/j.cell.2016.01.046

Advertisements

Mathematicians on planes: be careful of your sorcerous ways

menzio

Guido Menzio, an economist at UPenn, was on a plane, obsessively deriving some mathematical formulae, when…:

She decided to try out some small talk.

Is Syracuse home? She asked.

No, he replied curtly.

He similarly deflected further questions. He appeared laser-focused — perhaps too laser-focused — on the task at hand, those strange scribblings.

Rebuffed, the woman began reading her book. Or pretending to read, anyway. Shortly after boarding had finished, she flagged down a flight attendant and handed that crew-member a note of her own…

this quick-thinking traveler had Seen Something, and so she had Said Something.

That Something she’d seen had been her seatmate’s cryptic notes, scrawled in a script she didn’t recognize. Maybe it was code, or some foreign lettering, possibly the details of a plot to destroy the dozens of innocent lives aboard American Airlines Flight 3950. She may have felt it her duty to alert the authorities just to be safe. The curly-haired man was, the agent informed him politely, suspected of terrorism.

The curly-haired man laughed.

He laughed because those scribbles weren’t Arabic, or some other terrorist code. They were math.

Yes, math. A differential equation, to be exact.

…His nosy neighbor had spied him trying to work out some properties of the model of price setting he was about to present. Perhaps she couldn’t differentiate between differential equations and Arabic.

Somehow, this is not from The Onion.