Why the new paper by Christakis and Fowler on friendship makes me queasy

I am a neuroscientist, and as a neuroscientist I have a strange belief that most of who we are comes from our brains. My entire career is based around understanding the neural basis of behavior which, I think, is pretty justifiable.

So when I see paper looking at the genetics of behavior, I expect to see at least one or two genes that are directly involved in neural function. A dopamine receptor, probably, or maybe some calcium channels that are acting up. And in one recent paper looking at schizophrenia, that’s exactly what we find! A D2-like dopamine receptor and some glutamate genes. My world is consistent.

But then we get a paper about friendship from Christakis and Fowler who find that friends are more likely to be genetically related to you than chance. So that means that your close friend? Basically a fourth cousin. What Christakis and Fowler have found is a few sets of genes that seem like they might influence friendship. The most important is an olfactory gene which just reeks of pheromones (or possibly hygiene). But the next most important genes? They have to do with linoleic metabolism and immune processes!

Now what am I, as a neuroscientist, supposed to do with that? How do I reconcile my neural view of the world with one where metabolic processes are influencing decisions?

Perhaps I can quiet my mind a little. In a past blog post, I wrote about how social status causes changes in genes related to immune processes. So maybe I can squint and say that okay, really this is an epiphenomenon relating to social status.

But if I’m going to understand behavior – what do I have to know? Do I have to understand literally all of biology? That traits and choices are being affected by what seem to be totally non-brain factors? That my philosophical position of the extended mind is maybe true? That makes me a little queasy.

(End massively speculative rant.)

References

Christakis NA, & Fowler JH (2014). Friendship and natural selection. Proceedings of the National Academy of Sciences of the United States of America, 111 (Supplement 3), 10796-10801 PMID: 25024208

Ripke, S., Neale, B., Corvin, A., Walters, J., Farh, K., Holmans, P., Lee, P., Bulik-Sullivan, B., Collier, D., Huang, H., Pers, T., Agartz, I., Agerbo, E., Albus, M., Alexander, M., Amin, F., Bacanu, S., Begemann, M., Belliveau Jr, R., Bene, J., Bergen, S., Bevilacqua, E., Bigdeli, T., Black, D., Bruggeman, R., Buccola, N., Buckner, R., Byerley, W., Cahn, W., Cai, G., Campion, D., Cantor, R., Carr, V., Carrera, N., Catts, S., Chambert, K., Chan, R., Chen, R., Chen, E., Cheng, W., Cheung, E., Ann Chong, S., Robert Cloninger, C., Cohen, D., Cohen, N., Cormican, P., Craddock, N., Crowley, J., Curtis, D., Davidson, M., Davis, K., Degenhardt, F., Del Favero, J., Demontis, D., Dikeos, D., Dinan, T., Djurovic, S., Donohoe, G., Drapeau, E., Duan, J., Dudbridge, F., Durmishi, N., Eichhammer, P., Eriksson, J., Escott-Price, V., Essioux, L., Fanous, A., Farrell, M., Frank, J., Franke, L., Freedman, R., Freimer, N., Friedl, M., Friedman, J., Fromer, M., Genovese, G., Georgieva, L., Giegling, I., Giusti-Rodríguez, P., Godard, S., Goldstein, J., Golimbet, V., Gopal, S., Gratten, J., de Haan, L., Hammer, C., Hamshere, M., Hansen, M., Hansen, T., Haroutunian, V., Hartmann, A., Henskens, F., Herms, S., Hirschhorn, J., Hoffmann, P., Hofman, A., Hollegaard, M., Hougaard, D., Ikeda, M., Joa, I., Julià, A., Kahn, R., Kalaydjieva, L., Karachanak-Yankova, S., Karjalainen, J., Kavanagh, D., Keller, M., Kennedy, J., Khrunin, A., Kim, Y., Klovins, J., Knowles, J., Konte, B., Kucinskas, V., Ausrele Kucinskiene, Z., Kuzelova-Ptackova, H., Kähler, A., Laurent, C., Lee Chee Keong, J., Hong Lee, S., Legge, S., Lerer, B., Li, M., Li, T., Liang, K., Lieberman, J., Limborska, S., Loughland, C., Lubinski, J., Lönnqvist, J., Macek Jr, M., Magnusson, P., Maher, B., Maier, W., Mallet, J., Marsal, S., Mattheisen, M., Mattingsdal, M., McCarley, R., McDonald, C., McIntosh, A., Meier, S., Meijer, C., Melegh, B., Melle, I., Mesholam-Gately, R., Metspalu, A., Michie, P., Milani, L., Milanova, V., Mokrab, Y., Morris, D., Mors, O., Murphy, K., Murray, R., Myin-Germeys, I., Müller-Myhsok, B., Nelis, M., Nenadic, I., Nertney, D., Nestadt, G., Nicodemus, K., Nikitina-Zake, L., Nisenbaum, L., Nordin, A., O’Callaghan, E., O’Dushlaine, C., O’Neill, F., Oh, S., Olincy, A., Olsen, L., Van Os, J., Endophenotypes International Consortium, P., Pantelis, C., Papadimitriou, G., Papiol, S., Parkhomenko, E., Pato, M., Paunio, T., Pejovic-Milovancevic, M., Perkins, D., Pietiläinen, O., Pimm, J., Pocklington, A., Powell, J., Price, A., Pulver, A., Purcell, S., Quested, D., Rasmussen, H., Reichenberg, A., Reimers, M., Richards, A., Roffman, J., Roussos, P., Ruderfer, D., Salomaa, V., Sanders, A., Schall, U., Schubert, C., Schulze, T., Schwab, S., Scolnick, E., Scott, R., Seidman, L., Shi, J., Sigurdsson, E., Silagadze, T., Silverman, J., Sim, K., Slominsky, P., Smoller, J., So, H., Spencer, C., Stahl, E., Stefansson, H., Steinberg, S., Stogmann, E., Straub, R., Strengman, E., Strohmaier, J., Scott Stroup, T., Subramaniam, M., Suvisaari, J., Svrakic, D., Szatkiewicz, J., Söderman, E., Thirumalai, S., Toncheva, D., Tosato, S., Veijola, J., Waddington, J., Walsh, D., Wang, D., Wang, Q., Webb, B., Weiser, M., Wildenauer, D., Williams, N., Williams, S., Witt, S., Wolen, A., Wong, E., Wormley, B., Simon Xi, H., Zai, C., Zheng, X., Zimprich, F., Wray, N., Stefansson, K., Visscher, P., Trust Case-Control Consortium, W., Adolfsson, R., Andreassen, O., Blackwood, D., Bramon, E., Buxbaum, J., Børglum, A., Cichon, S., Darvasi, A., Domenici, E., Ehrenreich, H., Esko, T., Gejman, P., Gill, M., Gurling, H., Hultman, C., Iwata, N., Jablensky, A., Jönsson, E., Kendler, K., Kirov, G., Knight, J., Lencz, T., Levinson, D., Li, Q., Liu, J., Malhotra, A., McCarroll, S., McQuillin, A., Moran, J., Mortensen, P., Mowry, B., Nöthen, M., Ophoff, R., Owen, M., Palotie, A., Pato, C., Petryshen, T., Posthuma, D., Rietschel, M., Riley, B., Rujescu, D., Sham, P., Sklar, P., St Clair, D., Weinberger, D., Wendland, J., Werge, T., Daly, M., Sullivan, P., & O’Donovan, M. (2014). Biological insights from 108 schizophrenia-associated genetic loci Nature, 511 (7510), 421-427 DOI: 10.1038/nature13595

#cosyne14 day 3: Genes, behavior, and decisions

For other days (as they appear): 1, 2, 4deermouse - manisculatus

How do genes contribute to complex behavior?

Cosyne seems to have a fondness for inviting an ecogically-related researcher to remind us computational scientists that we’re actually studying animals that exist in, you know, an environment. Last year it was ants, this year deer mice.

Hopi Hoekstra gave an absolutely killer talk on a fairly complex behavior that is seen in deer mice: house building! Or rather, nest building. These mice will burrow to make a stereotyped nest with an entrance tunnel, a small nest, and an escape hatch that doesn’t quite make it to the surface (see below). But not every species of deer mouse builds their nest in precisely the same way. Only one (peromyscus) will build escape tunnels. Most will only make small little entrance tunnels (and possibly no nest?). Some don’t seem to dig at all. What causes this difference?

They crossed the species that makes long entrance tunnels and escape tunnels with a deer mouse nestrecently-diverged species (polionatus) that makes short entrance tunnels. These little guys will make tunnels that span the range from tiny to long, which suggests a multigenic trait. They did QTL on these crosses and found that only five genes are required for controlling nest building! One gene controls the construction of the escape tunnel, and four (three?) genes control the length of the entrance-tunnel length in an additive manner. One of the genes that is controlling tunnel length is an acetylcholine receptor in the basal ganglia (read: neuromodulator receptor in the ‘motivating’ part of the brain) that has been linked to addiction in other animals.

How many different behaviors do we have?

One of the themes that seemed to pop up this year was how to quantify animal behavior. It’s really not that obvious: is a reach for a coffee mug the same as a reach for my cell phone? Maybe, maybe not. Gordon Berman took their analytic tools to fly behavior in an attempt to map their ‘behavioral space’.

Screen shot 2014-03-02 at 8.09.40 AM

And okay, they were able to extract what look like unique behaviors: abdomen movements and wing movements and such. Okay, but that’s pretty hard for me to have an opinion on; what really sold me is when they decomposed a video of someone doing the hokey pokey. That gave them a hokey-pokey space which really corresponded to putting the left foot in, and also the left foot out, not to mention shaking things all about. It’s a shame that image is not up on the arXiv…

You know a talk is good when you start off incredibly skeptical and end up nodding along fervently by the end.

How do dopamine neurons signal prediction error?

Dopamine neurons are known to signal what is called ‘prediction error’: the difference between the expected reward and the received reward. How exactly are they doing it? Neir Eshel recorded from dopamine neurons (I missed where exactly) to expected and unexpected rewards. If you look at the reward vs. spike rate curve, they fit very well to a Hill function. In fact, every neuron they record from looks the same up to some multiplicative scaling factor. That’s a bit surprising to me because I thought there was much more heterogeneity in how, exactly, dopamine neurons respond to rewards…??

But they also find that the response to expected reward for any given neuron is the same Hill function as for the unexpected reward with some constant subtracted. They claim that this is beneficial because it allows even slowly responding neurons to contribute to prediction error without hitting the zero lower bound; I missed the logic of this when scribbling notes, though.

References
Gordon J. Berman, Daniel M. Choi, William Bialek, & Joshua W. Shaevitz (2013). Mapping the structure of drosophilid behavior arXiv arXiv: 1310.4249v1

Weber JN, Peterson BK, & Hoekstra HE (2013). Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature, 493 (7432), 402-5 PMID: 23325221
Photo from

Genes for savings behavior

The genoeconomics revolution is on!  Kind of.  Via Evolving Economics, a recent paper described how savings across life are explainable genetically.  Using twins, roughly one-third of the variance is explained by shared genes, in line with the genetic heritability of other behavioral traits..  This shouldn’t be remotely surprising.  Not only do they have another similar paper, but so do other people.  Evolving Economics points out one interesting (though again unsurprising) part of the study, though:

The evidence that parental influence fades out for older subjects and disappears by age 45, compared to the relatively constant genetic effects, is interesting. The break down of effects by age is not a regular feature of studies such as these (it comes at the cost of sample size). The authors write:

Our interpretation of this evidence is that social transmission from parents to their children affects children’s savings behavior early on in life, but unlike genetic effects, parenting does not have a lifelong impact on an individual’s savings behavior. These results are broadly consistent with research in behavioral genetics which has found a significant effect of the common family environment in early ages on, e.g., personality, but also shown that such effects approach zero in adulthood

The really interesting thing, though, should be: what genes are responsible for these behaviors?  Are risk-taking and overall savings rate related to the same genes?  How do these genes interact with the environment?  A quick search reveals a relationship between 5-HTTLPR (serotonin transporter; how much serotonin is in the body) as well as DRD4 (dopamine D4 receptor, a D1-like receptor that is mostly expressed in prefrontal cortex, iirc) with economic risk-taking.

But these papers are, hopefully, proof of principle for the economic community.  If papers like this can garner some influence, maybe a broad behavioral economics community can arise that studies these genetics.  God knows, listening to the first author of this paper talk makes it evident how much biology he needs to learn.